
Autoregressive Density Estimation Transformers for
Multivariate Time Series Anomaly Detection

Mohammed Ayalew Belay∗, Adil Rasheed†, Pierluigi Salvo Rossi∗‡
∗ Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway

† Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
‡ Department of Gas Technology, SINTEF Energy Research, Trondheim, Norway
Emails: mohammed.a.belay@ntnu.no, adil.rasheed@ntnu.no, salvorossi@ieee.org

Abstract—Anomaly detection in multivariate time series (MTS)
from sensor data is critical in many industrial applications. The
challenge lies in managing massive unlabeled datasets with com-
plex spatio-temporal correlations, diverse anomalies, and noise.
While several unsupervised methods have been proposed, they are
often limited to specific applications. In this paper, we introduce
a probabilistic self-supervised framework, Autoregressive Density
Estimation Transformer (ADET). ADET integrates an efficient
transformer for learning spatio-temporal representations with
density estimation networks for multi-score anomaly detection,
focusing on point-to-point, point-to-distribution, and distribution-
to-distribution distances. ADET improves noise resilience using
optimal truncated singular value decomposition (OT-SVD) in an
end-to-end optimization process. We conducted experiments by
employing several encoders and performed an ablation study to
examine the effect of OT-SVD.

Index Terms—Anomaly detection, transformer, unsupervised
learning, and low-rank approximation

I. INTRODUCTION

In the era of data-driven decision-making, multivariate time
series anomaly detection (MTSAD) has emerged as an essen-
tial tool for several applications such as industrial monitoring
[1], [2], cybersecurity [3], wireless sensor networks [4], [5],
healthcare [6], and autonomous vehicles [7]. MTSAD methods
aim to discern unexpected temporal patterns in datasets com-
posed of multiple dependent variables sampled at regular or
irregular intervals. While several conventional statistical and
machine learning methods provide a foundational framework
for MTSAD, their efficacy is limited by specific assump-
tions and scalability issues in high-dimensional, non-linear,
and noisy real-world datasets [8]. Recently, deep learning
methods enhanced MTSAD significantly in supervised, semi-
supervised, and unsupervised learning paradigms [9], [10].
However, supervised and semi-supervised MTSAD algorithms
are constrained by their dependence on labeled training data,
class imbalance bias, and reduced adaptability for dynamic
conditions [11], [12]. Consequently, there is a growing demand
for robust self-supervised MTSAD approaches and several
aspects are under investigation, including identification of
novel anomaly scoring methods and effective modeling of
spatial and/or temporal dependencies.

This work was partially supported by the Research Council of Norway
under the project DIGITAL TWIN within the PETROMAKS2 framework
(project nr. 318899).

Although several deep learning MTSAD methods have
been proposed, existing studies overlook the inherent low-
rank structure in multivariate time series due to correlated
measurements and noise. Additionally, existing frameworks
lack versatile anomaly scoring mechanisms. In real-world
MTS data, noise and correlations among components are
common, leading to higher false positives due to increased
rank. This suggests that integrating low-rank approximation
(LRA) methods into MTSAD frameworks can better capture
patterns for robust anomaly detection. MTS anomalies can
be point or sub-sequence anomalies, which present challenges
for conventional methods when abnormalities are isolated to
specific components. Several MTSAD methods [13]–[16] rely
on Euclidean distance-based scoring, using reconstruction or
prediction errors, which limits their ability to handle complex
multivariate data and diverse anomaly types. To address these
limitations, we propose Autoregressive Density Estimation
Transformers (ADET), a probabilistic framework for self-
supervised MTSAD. ADET combines efficient multi-head
transformer encoders for spatio-temporal representation learn-
ing with networks for density estimation, enabling compre-
hensive multi-score anomaly detection. It also supports noise-
tolerant detection of point and sub-sequence anomalies using
LRA with optimal truncated singular value decomposition
(OT-SVD) in an end-to-end optimized framework.

II. THE PROPOSED METHOD

We consider a multi-sensor system with K components
and xk[n] ∈ R denoting the value of the kth univariate
component at discrete time n. The data vector x[n] =
(x1[n], x2[n], . . . , xK [n])T ∈ RK collects all the components
at time n, and the collection of data vectors related to N
discrete times steps is arranged into the data matrix X =
(x[1],x[2], . . . ,x[N ]) ∈ RK×N . We assume a training data
matrix (Xtrain) is available and represents the MTS observa-
tions under normal conditions. The objective of the proposed
framework is to construct a model G(·) that characterizes
the MTS behavior under normal conditions and is capable of
detecting deviations from that behavior. For model evaluation,
we consider a test data matrix (Xtest ∈ RK×M with M ≪ N )
which includes MTS from both normal and anomalous condi-
tions. In addition, a label vector y = (y1, y2, · · · , yM )T paired
with the test data matrix is available and represents groundIC
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Fig. 1. Autoregressive Density Estimation Transformers (ADET) for self-supervised MTSAD

truth information, with ym = 1 (resp. ym = 0) denoting the
presence (resp. absence) of an anomaly at discrete time m.

A. Architecture Overview

The proposed ADET framework is based on a probabilistic
architecture utilizing autoregressive density estimation and
low-rank approximation (LRA), as illustrated in Fig. 1. ADET
consists of three key components: (i) Multi-head transformer
encoders for efficient spatio-temporal representation learning;
(ii) an LRA module to improve anomaly detection in the
presence of correlation and noise; (iii) a density estimation
block to generate predictive distributions for detecting both
point and sub-sequence anomalies. Let X[n] = (x[n],x[n −
1], . . . ,x[n − L + 1]) represent the input at time n, built
using a sliding window with size L. The input matrix X[n]
is processed by the transformer encoders to produce a latent
representation Z[n]. This latent representation is then used for
parametric estimation of the predictive probability distribution
of the next data point x[n + 1] using feed-forward neural
networks (FFNNs). The predictive distribution is modeled as
a multivariate Gaussian, defined by a mean vector µ[n + 1]
and a covariance matrix Σ[n+1]. The system aims to predict
a “noise-free” version of x[n+ 1]. The input matrix X[n] is
also processed by an LRA block, using OT-SVD, to produce
a matrix X̃[n]. This matrix serves as ground truth for system
training, using the negative log-likelihood loss function LNLL.

B. Transformer Spatio-Temporal Encoder

The proposed architecture utilizes transformer encoders for
learning spatio-temporal correlations. It consists of stacked
transformer-encoder modules, denoted as T (·), each contain-
ing a multi-head self-attention mechanism, position-wise feed-
forward networks (FFNNs), and normalization layers with
residual connections. Unlike recurrent networks, the trans-
former processes the input sequence in parallel. To maintain
sequential information, positional encoding is applied via a
positional encoding matrix P ∈ RK×N . The multi-head self-
attention mechanism computes attention scores using queries,

keys, and values derived from the input sequence with po-
sitional encoding. The query, key, and value matrices are
calculated as Qi = (X + P )WQ,i, Ki = (X + P )WK,i,
and Vi = (X+P )WV,i, where WQ,i ∈ RK×(K/H), WK,i ∈
RK×(K/H), and WV,i ∈ RK×K are learned weights for the ith
attention head, and H is the number of attention heads. Scaled-
dot attention operations are performed in parallel across all
heads, with outputs concatenated and transformed linearly:

A = Concat(A1, . . . ,AH)WO , (1)

where WO ∈ RHK×K is the output projection weight matrix.
The output of the attention mechanism is added to the input,
followed by a normalization layer. A position-wise FFNN is
then applied to capture complex non-linear dependencies, with
residual connections and normalization layers for stability.
This enables the transformer encoders to learn spatio-temporal
relationships effectively in the multivariate time series data
represented by X .

C. Optimal Low-Rank Approximations

The proposed architecture integrates OT-SVD as a LRA
for denoising, thus reducing false-positive rates in anomaly
detection. The optimal (i.e. minimizing the Frobenius norm)
rank-r approximation (X̃(r)) of an input matrix (X) is deter-
mined by retaining only the first r singular values and their
corresponding singular vectors [17]:

X̃(r) = argmin
X̂: rank(X̂)≤r

∥X − X̂∥
2

F =

r∑
i=1

σiuiv
T
i (2)

where ui and vi, are the left and right singular vectors of
the input matrix, and σi the corresponding singular values ar-
ranged in descending order (i.e., σ1 ≥ σ2 ≥ · · · ≥ σmin(K,L)).
The optimal rank r is selected via an information-theoretic
approach based on random matrix theory [18]. More specif-
ically, the optimal threshold (τ∗) minimizing the asymptotic
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mean square error (MSE) between the original matrix and its
low-rank approximation

τ∗ = argmin
τ

lim
S→∞

E
[
∥X − X̃(r)∥

2

F

]
. (3)

is computed, assuming additive white Gaussian noise, as
τ∗ = ω(ρ)σmed, where σmed is the median of the singular
values and ω(ρ) depends on the matrix dimensions. Finally,
the optimal threshold-dependent rank is thus determined by
r(τ) = max{i : σi > τ∗}. During the training process, the
“noise-free” reference signals (x̃[n] ∈ RK) are generated.

D. Autoregressive Density Estimation

In autoregressive framework, we employ a likelihood func-
tion parameterized by neural network outputs to model the
conditional distribution of future time series values based on
past observations. The latent representation from transformer
encoder is employed to estimate the parameters of predictive
Gaussian distribution (µ[n+1] and Σ[n+1]) from the latent
representation of the input matrix. The conditional distribution
is assumed to be a multivariate Gaussian distribution with
statistically-independent components, thus represented by its
mean vector µ[n+1] = (µ1[n+1], µ2[n+1], . . . , µK [n+1])T

and diagonal covariance matrix Σ[n + 1] = diag(σ2
1 [n +

1], σ2
2 [n + 1], . . . , σ2

K [n + 1]). The FFNN used for mean
estimation (Dµ) is linear, while the FFNN used for covariance
estimation (Dσ) employs softplus activation.

E. Loss function and optimization

In the probabilistic framework, we predict the parameters
of a conditional distribution given past observations. There-
fore, ADET training ADET relies on optimizing the network
parameters to minimize the negative log-likelihood (LNLL) of
the predictive Gaussian distribution (µ[n + 1] and Σ[n + 1])
evaluated for the next “noise-free” sample x̃[n+ 1], i.e.

LNLL = − ln p(x̃[n+ 1];µ[n+ 1],Σ[n+ 1])

=
1

2

K∑
k=1

[
ln(2πσ2[n+ 1]) +

(x̃k[n+ 1]− µk[n+ 1])2

σ2[n+ 1]

]
.

(4)

F. Inference and Anomaly Detection

The proposed architecture supports flexible multi-score
anomaly detection mechanisms capable of identifying both
point and sub-sequence anomalies. Specifically, it com-
bines point-to-point (SPP), point-to-distribution (SPD), and
distribution-to-distribution (SDD) scoring mechanisms.

1) Point-to-Point Scoring: Point-to-point scoring is
straightforward and computationally efficient, making it
suitable for initial anomaly detection. It is based on the
ℓ2-norm between the observed data point and the mean of
the predictive distribution:

SPP(x[n]) =

[
K∑

k=1

(xk[n]− µk[n])
2

] 1
2

. (5)

2) Point-to-Distribution Scoring: Point-to-distribution scor-
ing, particularly useful for correlated measurements, is based
on the Mahalanobis distance. It detects anomalies by mea-
suring the deviation of a single data point from the entire
predictive distribution:

SPD(x[n]) =

K∑
k=1

(xk[n]− µk[n])
2

σ2
k[n]

. (6)

3) Distribution-to-Distribution Scoring: This method uses
the KL divergence to quantify the difference between the
predicted distribution and the measured distribution extracted
from the current input X[n]. The measured distribution is
modeled as a multivariate Gaussian with mean vector µ̌[n] =
x[n] and diagonal covariance matrix Σ̌[n], where diagonal
terms represent the sample variance from the ”noise-free”
input data. The distribution-to-distribution score is computed
as:

SDD(x[n]) =

K∑
k=1

(µk[n]− xk[n])
2

σ2
k[n]

+

K∑
k=1

σ̌2
k[n]− σ2

k[n]

σ2
k[n]

+

K∑
k=1

ln

(
σ̌2
k[n]

σ2
k[n]

)
. (7)

Other probabilistic measures, such as JS divergence, Wasser-
stein distance, or total variation distance, can also be consid-
ered.

4) Multi-Score Anomaly Detection: We propose a generic
anomaly scoring approach by combining the point-to-point,
point-to-distribution, and distribution-to-distribution measures.
The total anomaly score (Sn) at a given time is given by:

Sn = αSPP + βSPD + γSDD (8)

where α, β, and γ determine the contribution of each score.
For unsupervised anomaly detection, a thresholding function is
applied based on the training data. The anomaly score (Sn) is
calculated for each time step, and the threshold is determined
by:

λ∗ =
1

N

N∑
i=1

Sn +

z2
N

N∑
i=1

(
Sn − 1

N

N∑
i=1

Sn

)2
 1

2

(9)

where Sn is given by equation (8) and z is a scale factor.

III. EXPERIMENTS AND RESULTS

A. Datasets and Pre-processing
To evaluate the performance of our proposed framework,

we used two real-world multivariate time series datasets. 1)
SWaT [19], [20] 2) WADI [21] We employ two key pre-
processing steps (downsampling and feature normalization)
on the input data prior to utilizing it in the framework.
Downsampling was performed using a median filter with a 1-
minute window size and no overlap for both training and test
datasets. Labels for the downsampled test data were assigned
based on the presence of anomalies within the corresponding
window. For feature normalization, we employed min-max
scaling to ensure stable training.
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B. Baselines and Implementation Details

To evaluate the performance of our proposed architecture,
we compare it with four other encoders: CNN, RNN, GRU,
and LSTM. These encoders represent a range of spatio-
temporal modeling techniques commonly used for multivariate
time series anomaly detection. The CNN encoder consists
of two 1D convolutional layers with a kernel size of 5 and
ReLU activations. For the RNN, GRU, and LSTM encoders,
we used two stacked layers with Tanh activations, with the
output size equal to the time series dimension. All baselines
were implemented in TensorFlow and trained under similar
conditions. Each model was trained using the Adam optimizer
with a learning rate of 10−4 and a batch size of 64. We also
considered some features to avoid an underflow problem. All
models were trained in the Google Colaboratory Pro environ-
ment using NVIDIA T4 GPUs. We evaluate performance on
labeled test datasets, using the F1 score and area under the
Precision-Recall curve (AUPR) as the key metrics due to data
imbalance.

C. Results and Discussions

1) Anomaly Scoring Performance: We evaluate the ADET
framework performance on the SWaT and WADI datasets
using different configurations of the α, β, and γ coefficients,
which weigh the anomaly detection scoring methods. As
shown in Table I, we use the F1 score, AUC, and AUPR to
assess performance. On the SWaT dataset, the highest AUC
(0.8831) and AUPR (0.7824) are achieved when γ = 1.0 and
both α and β are set to 0, indicating that point-to-distribution
scoring is most effective, suggesting the presence of point
anomalies. In contrast, the WADI dataset shows more variabil-
ity across configurations, highlighting that different datasets
benefit from different scoring strategies. The results demon-
strate that different datasets benefit from different anomaly
detection strategies.

TABLE I
ADET PERFORMANCE FOR DIFFERENT α, β , AND γ COEFFICIENTS (SWAT

AND WADI).

α β γ
SWaT WADI

F1 AUC AUPR F1 AUC AUPR
0.0 0.0 1.0 0.7726 0.8831 0.7824 0.2644 0.6100 0.1681
0.0 1.0 0.0 0.7835 0.8733 0.7713 0.3362 0.7897 0.2203
1.0 0.0 0.0 0.7431 0.8272 0.7135 0.4000 0.8064 0.2736
0.5 0.5 0.0 0.7828 0.8719 0.7712 0.3390 0.7914 0.2209
0.5 0.0 0.5 0.7726 0.8831 0.7824 0.2644 0.6100 0.1681
0.0 0.5 0.5 0.7726 0.8831 0.7824 0.2667 0.6109 0.1687
0.33 0.33 0.34 0.7726 0.8831 0.7824 0.2667 0.6109 0.1687

2) Spatio-temporal Encoder Performance: Table II shows
the performance of various spatio-temporal encoders across
multiple metrics (F1 score, AUC, and AUPR) on the SWaT and
WADI datasets. We evaluate five encoders using three scoring
mechanisms: point-to-point (SPP), point-to-distribution (SPD),
and distribution-to-distribution (SDD). The Transformer en-
coder consistently outperforms others on the SWaT dataset
and is competitive on the WADI dataset. For SWaT, the

Transformer achieves the best results across all scoring mech-
anisms (SPP, SPD, and SDD). The GRU also performs well,
particularly in the WADI dataset. These findings highlight the
Transformer’s superiority in capturing complex patterns and
dependencies in multivariate time series data, making it an
essential model for anomaly detection in multi-sensor data.

TABLE II
SPATIO-TEMPORAL ENCODER PERFORMANCE ACROSS METRICS

Score Encoder SWaT WADI
F1 AUC AUPR F1 AUC AUPR

SPP

CNN 0.7322 0.8145 0.7041 0.3357 0.7760 0.2385
RNN 0.6667 0.8407 0.4595 0.2708 0.7665 0.1718
GRU 0.7150 0.8704 0.5410 0.3077 0.7818 0.2680

LSTM 0.6081 0.8215 0.3671 0.3215 0.7931 0.2527
Transformer 0.7431 0.8272 0.7135 0.4000 0.8064 0.2736

SPD

CNN 0.7348 0.8390 0.7220 0.3226 0.5521 0.2434
RNN 0.2964 0.4556 0.1433 0.2795 0.7389 0.1765
GRU 0.6572 0.8642 0.6947 0.3621 0.7542 0.3176

LSTM 0.2817 0.4477 0.1724 0.3430 0.5697 0.2384
Transformer 0.7835 0.8733 0.7713 0.3362 0.7897 0.2203

SDD

CNN 0.6983 0.8467 0.7237 0.1667 0.4559 0.1164
RNN 0.2355 0.4066 0.1058 0.1739 0.5896 0.1089
GRU 0.7144 0.8561 0.7208 0.3223 0.6379 0.2752

LSTM 0.2352 0.2834 0.1174 0.1532 0.4583 0.1104
Transformer 0.7726 0.8831 0.7824 0.2644 0.6100 0.1681

3) Ablation Study: Table III presents the performance of
the ADET framework without OT-SVD denoising for different
combinations of the α, β, and γ coefficients across the
SWaT and WADI datasets. This serves as an ablation study
to compare how the anomaly detection framework performs
without the proposed OT-SVD denoising step, versus the
complete model that includes it (as shown in Table I). The
ablation study shows that OT-SVD denoising can be integrated
to improve performance of the ADET framework. While
the model without denoising still performs reasonably well,
particularly in some configurations, the inclusion of denoising
leads to consistently better results across all metrics.

TABLE III
WITHOUT: ADET PERFORMANCE FOR DIFFERENT α, β , AND γ

COEFFICIENTS (SWAT AND WADI).

α β γ
SWaT WADI

F1 AUC AUPR F1 AUC AUPR
0.0 0.0 1.0 0.7538 0.8581 0.7483 0.2875 0.5840 0.2100
0.0 1.0 0.0 0.7830 0.8675 0.7652 0.3448 0.7858 0.2511
1.0 0.0 0.0 0.7629 0.8785 0.7872 0.4121 0.8022 0.2780

IV. CONCLUSIONS

In this paper, we propose a robust, multi-score, and adap-
tive transformer-based framework for anomaly detection in
multivariate time series. The transformer encoder consistently
outperformed other baseline models, especially in the SWaT
dataset, highlighting its ability to capture complex spatio-
temporal dependencies. In future work, we will further ex-
periment on weight optimization methods and evaluate the
framework on more datasets.
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